Winner – 1st prize

Nidhi Chaudhary

Cell-to-Cell Communication: “The first kiss”

All living creatures communicate, including individual human cells that use thousands of wireless signals to talk to each other, such as cytokines and proteins. Immunofluorescence image of human embryonic kidney cells HEK-293 shows two cells communicating by extending their cellular projections towards each other and increased localization of cytoskeletal protein β-Tublin (shown as green) and methyltransferase protein SMYD5 (shown in red).

2nd prize

Emily Roth

Coding

A snippet of code from my honours project, with a futuristic element.

2nd prize

Sabrina Robichaud

At the heart of it

Human THP-1 macrophage lipid loaded with aggregated low-density lipoprotein. Accumulation of lipids can be seen within the lipid droplets (green) surrounded by the lipid droplet coat protein, adipophilin (pink). Nucleus stained in blue.
Cell-to-Cell Communication: “The first kiss”

All living creatures communicate, including individual human cells that use thousands of wireless signals to talk to each other, such as cytokines and proteins. Immunofluorescence image of human embryonic kidney cells HEK-293 shows two cells communicating by extending their cellular projections towards each other and increased localization of cytoskeletal protein β-Tublin (shown as green) and methyltransferase protein SMYD5 (shown in red).

Winner – 1st prize Nidhi Chaudhary
Coding

A snippet of code from my honours project, with a futuristic element.

2nd prize Emily Roth
At the heart of it

Human THP-1 macrophage lipid loaded with aggregated low-density lipoprotein. Accumulation of lipids can be seen within the lipid droplets (green) surrounded by the lipid droplet coat protein, adipophilin (pink). Nucleus stained in blue.