The Department of Family Medicine’s PMO (Project Management Office) has kicked off a virtual reality project called “Contamination Control & Spread” and is hosting a preliminary design review meeting on **Wednesday, July 7 at 1:00 pm**. Any interested party is encouraged to join to see firsthand what the team has been working on. During this 1-hour meeting, the design team will present their preliminary design concept and gather our input so that we can formally agree on the objectives of the experience before moving onto the development phase.

Please note the team will present preliminary designs, and as such, there will not be many visualizations or VR demos at this point in time.

However, the more perspectives we can gather feedback from on the overall concept and what the end-user will experience while in the virtual environment- the better! Your participation will be instrumental in reaching our key milestones.

If you are interested in joining this meeting, please contact Marisa Duval at mduval2@uottawa.ca so that the meeting details can be forwarded to you. Additional information regarding this project has been included below.

Contamination Control & Spread Project Background

Contamination Control & Spread Project Overview:

The project will result in the creation of an immersive virtual reality experience that both:

- Demonstrates the spread of potentially hazardous contamination using visualization in virtual reality
- Teaches basic concepts of contaminant spread and principles of contamination control
Project Objectives:

- Create an engaging, educational and accessible piece of original digital content for learners (across various types of students, levels of study, programs, general members of the public, etc.) across Ontario to learn best practices in biological contamination control
- Build a set of XR virtual learning assets that can be collaboratively built upon for future XR experiences
- Validate and refine a best practices and an operating model for the creation of XR experiences that is built on the foundational principle of learner-centred design
- Foster collaborative partnership for the development of virtual learning assets, including integration of local XR development expertise for knowledge transfer into the University
- Introduce VR as a platform and inform users of its potential

Narrative Summary of the Virtual Experience:

- Users are given the objective to get to class on time. To accomplish this, they must travel from the starting area, which is at one end of a busy hallway, to their classroom, which is at the other end of the hallway.
- Over the course of walking from one end of the hallway to the other, the user will have the opportunity to complete tasks, interact with different virtual objects, and encounter an airborne contaminant (and/or aerosolized droplet).
- Following reaching the classroom, users will receive an extended debrief and visual “reveal” of what occurred during their walk down the hallway.

Learning Outcomes:

At the conclusion of this immersive experience, learners will be able to:

- Identify common causes and types of hazardous contamination
- Recognize how people introduce vectors for contaminant spread
- Recall how to prevent & protect against contamination spread